Abstract

We have developed a low-cost alternating current (AC) direct light-emitting diode (LED) chip in which bridge rectifiers are implemented within a multi-cell array. The chip was designed and fabricated to form a ladder type electrical circuit of integrated multi-cells for direct operation with high voltage AC power source. Through a new isolation process technique, the luminous flux in the multi-chip LEDs increased by 5%, which is ascribed to the increase of active area in the chip. In this paper, we report on the effects of a cell array design on the luminous efficiency, and a new process to improve the device performance. The 2 W device exhibited a typical luminous efficiency of 85 lm/W at a color temperature of 3000 K and color rendering index (CRI) 80. Furthermore, an advanced design to overcome the optical and electrical degradation by the high reverse voltage applied to a bridge rectifier are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.