Abstract
Multi-area economic dispatch (MAED) incorporating renewable energy has become an important issue in the power system optimization. Existing intelligent optimization algorithms often suffer from poor solution accuracy or slow convergence when dealing with MAED problems. In this paper, a novel derivative search-based political optimization (DSPO) algorithm is proposed to handle the MAED problem incorporating renewable energy including wind and solar energy. In the renewable energy modeling, the Weibull and log-normal probability density functions are used to calculate available wind and solar power respectively. In order to improve the search performance, DSPO adopts two strategies: leader guide strategy and derivative search mechanism. The former adds the leader’s global optimal information which can direct candidate solutions to more promising regions and speed up convergence. The latter derives neighborhood solutions around some high-quality solutions to improve the exploitation ability. The DSPO algorithm is applied to solve four MAED problems which take into account valve point effect, prohibited operating zone, power loss and so on. The simulation results show that the DSPO algorithm achieves the overall best results in terms of convergence speed, solution accuracy and stability when compared with several well-established algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.