Abstract
In three-dimensional (3D) video applications, structured-light RGB-D cameras are commonly used to capture depth images that convey the per-pixel depth information in a scene. However, these cameras often produce regions with missing pixels (MPs). These regions, referred to as holes, will not contain no any depth information for the captured depth image. In this paper, a novel depth image enhancement method that accurately estimates depth values of MPs is presented. In the proposed method, the neighboring region outside the hole is first segmented into superpixels using simple linear iterative clustering. Subsequently, the depth value trend of each superpixel is modeled as a linear surface. Finally, one of the linear surfaces is selected using a proposed metric, to estimate the depth value of a particular MP in the hole. Experimental results demonstrate that the proposed method provides superior performance, especially around the object boundary, compared with other state-of-theart depth image enhancement methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.