Abstract

The presence of thick clouds in single optical images shows the contamination of interesting objects. Besides, the difficulty of thick cloud removal is mainly the restoration of the weak boundary information from cloud-contaminated areas. Recently, many deep-learning-based frameworks were applied for cloud removal by obtain the related semantic information from the weak boundary information. However, the large-size cloud-contaminated areas lead to the artificial textures in the resulting images. Thus, obtaining the optimal semantic information from finite boundary information is the key to solve this problem. In this work, we design a deep-learning framework for cloud removal, especially large-size clouds removal (i.e., more than 30% coverage of the whole image). First, we design a cloud location model (CLM) which adopted the fully convolutional network to locate the cloud. Second, desired by theory of the coarse-to-fine restoration, we build a dense-attention network (termed as DANet) for restoring cloud contaminated areas. In the DANet, we design a dense block into the coarse network for training the features of restoring directions of each pixel from the weak boundary information. Furthermore, a contextual attention module is built into refinement network for restoring contaminated areas relying on the semantic relationship between the background and foreground information. Compared with the state-of-the-art methods, the proposed DANet achieved greater removal performances and reconstruct more natural image textures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call