Abstract

Machine learning (ML) is playing an increasingly important role in processing large amounts of data generated by communication networks, since it can efficiently solve the problems of non-linearity and unstructured data. Recently, ML has been widely used in the processing of wireless channel data, as the noisy channel in real propagation environment is usually non-linear and unstructured. In this paper, a denoising method based on ML is presented. Two ML algorithms are used to classify and remove noise in channel impulse responses. Then, the results of the traditional noise threshold denoising are compared with ML denoising, and it is found that the denoising classifier using the bidirectional recurrent neural network has the better denoising performance. Finally, some channel parameters such as RMS delay spread are estimated based on measured channel data using different denoising methods. The results are evaluated and compared to explore the impact of denoising method on the extracted channel parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.