Abstract

Mounting concerns pertaining to energy efficiency have led to the research of load monitoring. By Non-Intrusive Load Monitoring (NILM), detailed information regarding the electric energy consumed by each appliance per day or per hour can be formed. The accuracy of the previous residential load monitoring approach relies heavily on the data acquisition frequency of the energy meters. It brings high overall cost issues, and furthermore, the differentiating algorithm becomes much more complicated. Based on this, we proposed a novel non-Intrusive residential load disaggregation method that only depends on the regular data acquisition speed of active power measurements. Additionally, this approach brings some novelties to the traditionally used denoising Auto-Encoder (dAE), i.e., the reconfiguration of the overlapping parts of the sliding windows. The median filter is used for the data processing of the overlapping window. Two datasets, i.e., the Reference Energy Disaggregation Dataset (REDD) and TraceBase, are used for test and validation. By numerical testing of the real residential data, it proves that the proposed method is superior to the traditional Factorial Hidden Markov Model (FHMM)-based approach. Furthermore, the proposed method can be used for energy data, disaggregation disregarding the brand and model of each appliance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.