Abstract

We demonstrated that the formation and solidification of a continuous confined water film played a very important role in changing the elastic modulus of the wet polymer substrate in a nanoindentation process by a coarse-grained molecular dynamics simulation of this process. It was found that as the water content increased, the elastic modulus of the wet polymer substrate showed a non-monotonic change. Relative to the dry polymer substrate, the elastic modulus of the wet polymer first decreased. This is because the appearance of a confined water film caused the force between the polymer substrate and the indenter to change from repulsion to attraction. Subsequently, as the confined water film gradually solidified and then weakened, the elastic modulus of the wet polymer slowly increased and then rapidly increased due to a large number of interstitial water molecules gradually penetrating the polymer substrate. Therefore, it is unreasonable to explain the wet polymer degradation during nanoindentation only from the plasticization and anti-plasticization effects based on the hydrogen bond breaking and formation during stretching. The above-mentioned results will help to more comprehensively understand the degradation mechanism of the polymers' encounter with water, thus promoting further practical applications for polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.