Abstract

Dam displacements can effectively reflect its operational status, and thus establishing a reliable displacement prediction model is important for dam health monitoring. The majority of the existing data-driven models, however, focus on static regression relationships, which cannot capture the long-term temporal dependencies and adaptively select the most relevant influencing factors to perform predictions. Moreover, the emerging modeling tools such as machine learning (ML) and deep learning (DL) are mostly black-box models, which makes their physical interpretation challenging and greatly limits their practical engineering applications. To address these issues, this paper proposes an interpretable mixed attention mechanism long short-term memory (MAM-LSTM) model based on an encoder-decoder architecture, which is formulated in two stages. In the encoder stage, a factor attention mechanism is developed to adaptively select the highly influential factors at each time step by referring to the previous hidden state. In the decoder stage, a temporal attention mechanism is introduced to properly extract the key time segments by identifying the relevant hidden states across all the time steps. For interpretation purpose, our emphasis is placed on the quantification and visualization of factor and temporal attention weights. Finally, the effectiveness of the proposed model is verified using monitoring data collected from a real-world dam, where its accuracy is compared to a classical statistical model, conventional ML models, and homogeneous DL models. The comparison demonstrates that the MAM-LSTM model outperforms the other models in most cases. Furthermore, the interpretation of global attention weights confirms the physical rationality of our attention-based model. This work addresses the research gap in interpretable artificial intelligence for dam displacement prediction and delivers a model with both high-accuracy and interpretability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.