Abstract
Security assessments are essential in network systems to improve the reliability of the environment. This study presents a deep learning-based security assessment model as a proactive approach for monitoring network activities. This approach can improve security across the network environment and connected computing infrastructures by detecting and classifying various types of security attacks. Deep learning is one of the emerging solutions for integrating intelligent and smart techniques into traditional solutions for improving the performance of security detection. Leveraging a multilayer perceptron (MLP) combined with an XGBoost classifier for large-scale data processing and classification, the performance of the approach demonstrated an accuracy of 93.30% and a precision of 92.73% for malicious attack detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Critical Infrastructure Protection
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.