Abstract
Deepfake is utilized in synthetic media to generate fake visual and audio content based on a person’s existing media. The deepfake replaces a person’s face and voice with fake media to make it realistic-looking. Fake media content generation is unethical and a threat to the community. Nowadays, deepfakes are highly misused in cybercrimes for identity theft, cyber extortion, fake news, financial fraud, celebrity fake obscenity videos for blackmailing, and many more. According to a recent Sensity report, over 96% of the deepfakes are of obscene content, with most victims being from the United Kingdom, United States, Canada, India, and South Korea. In 2019, cybercriminals generated fake audio content of a chief executive officer to call his organization and ask them to transfer $243,000 to their bank account. Deepfake crimes are rising daily. Deepfake media detection is a big challenge and has high demand in digital forensics. An advanced research approach must be built to protect the victims from blackmailing by detecting deepfake content. The primary aim of our research study is to detect deepfake media using an efficient framework. A novel deepfake predictor (DFP) approach based on a hybrid of VGG16 and convolutional neural network architecture is proposed in this study. The deepfake dataset based on real and fake faces is utilized for building neural network techniques. The Xception, NAS-Net, Mobile Net, and VGG16 are the transfer learning techniques employed in comparison. The proposed DFP approach achieved 95% precision and 94% accuracy for deepfake detection. Our novel proposed DFP approach outperformed transfer learning techniques and other state-of-the-art studies. Our novel research approach helps cybersecurity professionals overcome deepfake-related cybercrimes by accurately detecting the deepfake content and saving the deepfake victims from blackmailing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.