Abstract
Due to its intricacy, dermatology presents the most challenging and uncertain terrain for diagnosis. Skin conditions like Carcinoma and Melanoma are frequently very challenging to identify in the early stages and are much more challenging to define independently. The use of pattern recognition models to automate detection has been studied by a number of writers. This research describes a novel Deep Convolutional Neural Network (DCNN) for Skin Disease Detection. The photographs of skin would undergo processing to remove unwanted noise as well as to improve the photos. The performance of classification will be greatly impacted by the pixel values of a picture. The picture is classified using the softmax classifier method by feature extraction utilising DCCN, and a diagnosis report is produced as the result. In comparison to more classic approaches like KNN (K-Nearest Neighbour) and CNN, this methodology will provide results faster and with improved accuracy, precision, and recall. With a detection time of 10,000 milliseconds, DCNN achieved accuracy, precision, and recall percentages of 98.4%, 96.3%, and 97.2%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.