Abstract

In Dempster–Shafer evidence theory, the basic probability assignment (BPA) can effectively represent and process uncertain information. How to transform the BPA of uncertain information into a decision probability remains a problem to be solved. In the light of this issue, we develop a novel decision probability transformation method to realize the transition from the belief decision to the probability decision in the framework of Dempster–Shafer evidence theory. The newly proposed method considers the transformation of BPA with multi-subset focal elements from the perspective of the belief interval, and applies the continuous interval argument ordered weighted average operator to quantify the data information contained in the belief interval for each singleton. Afterward, we present an approach to calculate the support degree of the singleton based on quantitative data information. According to the support degree of the singleton, the BPA of multi-subset focal elements is allocated reasonably. Furthermore, we introduce the concepts of probabilistic information content in this paper, which is utilized to evaluate the performance of the decision probability transformation method. Eventually, a few numerical examples and a practical application are given to demonstrate the rationality and accuracy of our proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.