Abstract

Summary Low-voltage direct current (DC) microgrids will have a significant position in smart grids. Of course, currently, DC microgrids are mainly used in the areas with sensitive electrical loads. The main issue in these microgrids is the voltage control. In this paper, a practical, reliable, modular, autonomous, and decentralized voltage control method, namely the voltage-based power-voltage (VbPV) control method, is proposed for the most common type of DC microgrids, that is, the DC microgrids with sensitive loads. The proposed voltage control method leads to the flattest voltage profile, which is essential for the DC microgrids. Besides, the presented method minimizes the power loss and maximizes the line capacity release. It is noteworthy that the VbPV control method requires no telecommunication infrastructure. Furthermore, contrary to some other DC voltage control methods, it is applicable to different real DC microgrids. Here, some numerical examples are mentioned to discuss and clarify the remarkable achievements of the VbPV control method. The analytic and simulation results confirm the successful performance of the VbPV control method. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.