Abstract

There are several drawbacks for lithium-ion batteries at low temperatures, including weak electrolyte conductivity, low chemical reaction rate and greatly increased impedance. Thus, it is inefficient to charge lithium-ion batteries at low temperatures. This work proposes an AC incentive fast charging strategy at low-temperatures for lithium-ion batteries based on the analysis and comparison of the existing charging and heating methods. The charging speed, temperature variation, the capacity loss of the constant current constant voltage (CCCV) charging strategy and the proposed method with different current and frequency conditions are compared and analyzed. The results show that it takes about 1400 s for the proposed method to fully charge a lithium-ion battery in the case of 2.2 A current beginning at 25% state of charge (SOC). In addition, the temperature rises about 8 °C. In contrast, the charging time of the CCCV method is 400 s slower than the proposed method and the temperature of the CCCV method increases only about 2 °C. In the case of 1.5 A current beginning at 0% SOC, the charging time of the proposed method is 500 s faster than the CCCV method. The results indicate that the proposed charging method can significantly improve the charging efficiency of lithium-ion batteries at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call