Abstract

In order to ensure the efficient, reliable, and safe operation of the lithium-ion battery system, an accurate battery state-of-health estimation is essential and remaining challenges. Here we propose a novel data-model fusion battery state-of-health estimation approach based on open-circuit-voltage parametric modeling considering the correlation between capacity degradation and the open-circuit-voltage changes. An open-circuit-voltage model is built to capture the aging behavior associated with the reactions progress in the cell. Then the battery state-of-health estimation approach is developed based on the correlation between capacity fade and the changes of the open-circuit-voltage model parameters. In addition, a data-driven based method is applied to identify the parameters of the proposed battery model to obtain the open-circuit-voltage online. The proposed state-of-health estimation approach has been verified by the cells experienced different aging paths. The results show that the average relative errors of the state-of-health estimation for all cells are less than 3% against different aging paths and levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.