Abstract
Abstract This research aims to propose an effective model for the detection of defective Printed Circuit Boards (PCBs) in the output stage of the Surface-Mount Technology (SMT) line. The emphasis is placed on increasing the classification accuracy, reducing the algorithm training time, and a further improvement of the final product quality. This approach combines a feature extraction technique, the Principal Component Analysis (PCA), and a classification algorithm, the Support Vector Machine (SVM), with previously applied Automated Optical Inspection (AOI). Different types of SVM algorithms (linear, kernels and weighted) were tuned to get the best accuracy of the resulting algorithm for separating good-quality and defective products. A novel automated defect detection approach for the PCB manufacturing process is proposed. The data from the real PCB manufacturing process were used for this experimental study. The resulting PCALWSVM model achieved 100 % accuracy in the PCB defect detection task. This article proposes a potentially unique model for accurate defect detection in the PCB industry. A combination of PCA and LWSVM methods with AOI technology is an original and effective solution. The proposed model can be used in various manufacturing companies as a postprocessing step for an SMT line with AOI, either for accurate defect detection or for preventing false calls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.