Abstract

During the service of rotating machinery, the pedestal bolts are prone to looseness due to the vibration environment, which affects the performance of rotating machinery and generate potential safety hazard. To monitor the occurrence and deterioration of the pedestal looseness in time, this paper proposes a data-driven diagnosis strategy for the rotor-bearing system. Firstly, the finite element model of a rotor-bearing system is established, which considers the piecewise nonlinear force caused by pedestal looseness. Taking the vibration response as output and periodic unbalanced force as input, the system’s NARX (Nonlinear Auto-Regressive with exogenous inputs) model is identified. Then GALEs (Generalized Associated Linear Equations) are used to evaluate NOFRFs (Nonlinear Output Frequency Response Functions) of the NARX model. Based on the first three-order NOFRFs, the analytical expression of the second-order optimal weighted contribution rate is derived and used as a new health indicator. The simulation results show that compared with the conventional NOFRFs-based health indicator, the new indicator is more sensitive to weak looseness. Finally, a rotor-bearing test rig was built, and the pedestal looseness was performed. The experiment results show that as the degree of looseness increases, the new indicator SRm shows a monotonous upward trend, increasing from 0.48 in no looseness to 0.90 in severe looseness, a rise of 89.7%. However, the traditional indicator Fe2 has no monotonicity, which further verifies the sensitivity of the first three-order NOFRFs-based second-order optimal weighted contribution rate and the effectiveness of the proposed data-driven feature extraction strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.