Abstract

In this research a new data compression technique for electrical signals was proposed. The methodology combined wavelets and compressed sensing techniques. Two algorithms were proposed; the first one was designed to find specific characteristics of any type of energy quality signal such as the number of samples per cycle, zero-crossing indices, and signal amplitude. With the data obtained, the second algorithm was designed to apply a biorthogonal wavelet transform resulting in a shifted signal, and its amplitude was modified with respect to the original. The errors were rectified with the attributes found in the early stage, and the application of filters was conducted to reduce the ripple attached. Then, the third algorithm was designed to apply Compressive Sampling Matching Pursuit, which is a greedy algorithm that creates a dictionary with orthogonal bases representing the original signal in a sparse vector. The results exhibited excellent features of quality and were accomplished by the suggested compression and reconstruction technique. These results were a compression ratio of 1020:1, that is, the signal was compressed by 99.90% with respect to the original one. The quality indicators achieved were RTE = 0.9938, NMSE = 0.0098, and COR = 0.99, exceeding the results of the most relevant research papers published in Q1 high-impact journals that were further discussed in the introduction section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.