Abstract

α-Diazo ketones containing an amido group in the γ-position have been found to undergo a novel rhodium(II)-catalyzed cycloaddition reaction. Intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group generates a carbonyl ylide dipole as a transient species. This highly stabilized dipole does not readily undergo 1,3-dipolar cycloaddition but rather transfers a proton to produce a cyclic ketene N,O-acetal. The ketene acetal is unstable to moisture and upon standing is readily hydrolyzed to a γ-keto δ-lactone and an amine. In the absence of any significant amount of water, the ketene N,O-acetal undergoes conjugate addition with the activated π-bond of the dipolarophile to give a zwitterion intermediate. The anionic portion of the zwitterion adds to the neighboring carbonyl group. This is followed by epoxide ring formation with charge dissipation leading to an amido-substituted spiro cyclopentyl epoxide. In certain cases a hydroxy lactone was also isolated and its formation can be attributed to the competitive hydrolysis of the zwitterionic intermediate. The Rh(II)-catalyzed reaction of the diazo ketoamide derived from N-benzylpiperidone with DMAD afforded two different types of cycloadducts. In addition to the spiro cyclopentyl epoxide, a product derived from trapping of the carbonyl ylide dipole was also obtained, thereby providing additional support for the proposed mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call