Abstract

The side-chain to side-chain cyclized opioid peptide analogs H-Tyr-D-Orn-Phe-Asp-NH2 (I) and H-Tyr-D-Lys-Phe-Glu-NH2 (II) were synthesized and tested in the guinea pig ileum and mouse vas deferens assays and in binding assays based on displacement of mu- and delta-opioid receptor-selective radioligands from rat brain membranes. The more rigid cyclic analog I containing a 13-membered ring structure showed very high preference for mu-receptors over delta-receptors, whereas the more flexible cyclic peptide II (15-membered ring) was non-selective. These results indicate that variation in the degree of conformational restriction of opioid peptides can produce drastic shifts in their receptor selectivity profile. Because of its high mu-receptor selectivity and rigidity cyclic analog I will be useful for determining the conformational requirements of mu-opioid receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.