Abstract

This research presents a novel Customised Load Adaptive Framework (CLAF) for fault classification in Induction Motors (IMs), utilising the Machinery Fault Prevention Technology (MFPT) bearing dataset. CLAF represents a pioneering approach that extends traditional fault classification methodologies by accounting for load variations and dataset customisation. Through a meticulous two-phase process, it unveils load-dependent fault subclasses that have not been readily identified in traditional approaches. Additionally, new classes are created to accommodate the dataset’s unique characteristics. Phase 1 involves exploring load-dependent patterns in time and frequency domain features using one-way Analysis of Variance (ANOVA) ranking and validation via bagged tree classifiers. In Phase 2, CLAF is applied to identify mild, moderate, and severe load-dependent fault subclasses through optimal Continuous Wavelet Transform (CWT) selection through Wavelet Singular Entropy (WSE) and CWT energy analysis. The results are compelling, with a 96.3% classification accuracy achieved when employing a Wide Neural Network to classify proposed load-dependent fault subclasses. This underscores the practical value of CLAF in enhancing fault diagnosis in IMs and its future potential in advancing IM condition monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.