Abstract
With the advances of technology, many new well logs have been acquired over the past decade that carries vital information about the reservoir and subsurface layers. Thus, identifying the most relevant data that can improve the determination and prediction of petrophysical parameters has become very challenging. There has been an increase in the application of machine learning models that can accurately determine the petrophysical parameters of reservoirs, but further studies are still in demand. In this study, enhanced data analytics were used together with the visualisation techniques to pre-process the wireline logs acquired from the Volve field in the North Sea.Descriptive statistical methods were used to understand the relationship between the variables (input and output parameters), followed by applying the Extreme Gradient Boosting (XGBoost) regression model to predict the reservoir permeability and water saturation. A new ensemble model of Random Forest and Lasso Regularisation with an enhanced feature engineering technique was then proposed to improve the accuracy of the results. It appeared that the proposed ensemble model has a better performance than the traditional XGBoost and the hybrid PCA-XGBoost models in terms of precision, consistency and accuracy. The immense potential of ensemble modelling to enhance reservoir characterisation has been demonstrated by the success of this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.