Abstract

This article presents a current limitation technique for a multiphase bearingless machine featuring a combined winding system. This winding structure allows the machine to produce both suspension force and motoring torque. The main challenges with the combined winding configuration consist of decoupling the suspension force and torque generation and designing a proper current limitation algorithm. The former topic has been already tackled and presented in previous publications, while the latter will be addressed in this article. In particular, the proposed suspension force control technique will allow to prioritize either suspension force or torque generation. In this article, the priority is given to the rotor levitation, hence the suspension force rather than the torque is essential. Finally, simulation results and experiment validation on a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\text{1.5}\,\text{kW}/3000\,\text{r/min}$</tex-math></inline-formula> prototype machine are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.