Abstract

Tissue engineering provides a promising approach to treat degenerative disc disease, which usually requires a large quantity of seed cells. A simple and reliable in vitro culture system to expand seed cells in a timely fashion is necessary to implement the application clinically. Here, we sought to establish a cost-effective culture system for expanding human annulus fibrosus cells using extracellular matrix (ECM) proteins as culture substrates. Cells were cultured onto a plastic surface coated with various types of ECMs, including fibronectin, vitronectin, collagen type I, gelatin and cell-free matrix deposited by human nucleus pulposus cells. AF cell morphology, growth, adhesion and phenotype (anabolic and catabolic markers) were assessed by microscopy, real-time RT-PCR, western blotting, zymography, immunofluorescence staining and biochemical assays. Fibronectin, collagen and gelatin promoted cell proliferation and adhesion in a dose-dependent manner. Fibronectin elevated mRNA expression of proteoglycan and enhanced glycosaminoglycan production. Both collagen and gelatin increased protein expression of type II collagen. Consistent with increased cell adhesion, collagen and fibronectin promoted formation of focal adhesion complexes in the cell-matrix junction, suggesting enhanced binding of the actin network with both ECM substrates. On the other hand, fibronectin, collagen and gelatin decreased expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in media. Finally, a mixture of fibronectin (1.7μg/mL) and collagen (1.3μg/mL) was identified as the most promising in vitro culture substrate system in promoting proliferation and maintaining anabolic-catabolic balance. Our method provides a simple and cost-effective platform for tissue engineering applications in intervertebral disc research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.