Abstract
AbstractConsidering the imprecise or fuzzy nature of the data in real-world problems, this paper proposes a novel cultural algorithm based on differential evolution (CADE) to solve the hybrid flow shop scheduling problems with fuzzy processing time(FHFSSP). The mutation and crossover operations of differential evolution (DE) are introduced into cultural algorithm (CA) to enhance the performance of traditional CA. Experimental results demonstrate that the proposed CADE method is more effective than CA, particle swarm optimization (PSO) and quantum evolution algorithm (QA) when solving FHFSSP.KeywordsCultural algorithmDifferential evolutionHybrid flow shop schedulingMakespanFuzzy processing time
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.