Abstract

Myotonic dystrophy type 1 (DM1) is caused by an expanded CUG repeat (CUG(exp)) that sequesters muscleblind-like 1 protein (MBNL1), a protein that regulates alternative splicing. CUG(exp) RNA is a validated drug target for this currently untreatable disease. Herein, we develop a bioactive small molecule (1) that targets CUG(exp) RNA and is able to inhibit the CUG(exp)·MBNL1 interaction in cells that model DM1. The core of this small molecule is based on ligand 2, which was previously reported to be active in an in vitro assay. A polyamine-derivative side chain was conjugated to this core to make it aqueous-soluble and cell-penetrable. In a DM1 cell model this conjugate was found to disperse CUG(exp) ribonuclear foci, release MBNL1, and partially reverse the mis-splicing of the insulin receptor pre-mRNA. Direct evidence for ribonuclear foci dispersion by this ligand was obtained in a live DM1 cell model using time-lapse confocal microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.