Abstract
In this paper, the state estimation problem for fractional-order nonlinear discrete-time stochastic systems is considered. A new method for the state estimation of fractional nonlinear systems using the statistically linearized method and cubature transform is presented. The fractional extended Kalman filter suffers from two problems. Firstly, the dynamic and measurement models must be differentiable and, secondly, nonlinearity is approximated by neglecting the higher order terms in the Taylor series expansion; by the proposed method in this paper, these problems can be solved using a statistically linearized algorithm for the linearization of fractional nonlinear dynamics and cubature transform for calculating the expected values of the nonlinear functions. The effectiveness of this proposed method is demonstrated through simulation results and its superiority is shown by comparing our method with some other present methods, such as the fractional extended Kalman filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.