Abstract
Sulfur dioxide (SO2)-based gas therapy and chemodynamic therapyare both reactive oxygen species (ROS)-mediated anticancer strategies, but there are few reports of their combined application. To this end, a novel graft-type copolymeric SO2 prodrug, PLG-g-mPEG-DNs, is designed and synthesized in this work. The amphiphilic polypeptides can self-assemble into nanoparticles (NPs) and encapsulated Cu(II) ions by metal-carboxyl coordination. In vitro release results showed that the obtained NPs-Cu can respond to the acidic pH and high glutathione levels typical of a tumor microenvironment to release Cu(II) and SO2 simultaneously. Both a Cu(II)-triggered Fenton-like reaction and the SO2 gas would promote ROS production and upregulate the oxidative stress in tumor cells, leading to an enhanced killing effect towards 4T1 cancer cells compared to either Cu(II) or the NPs alone. Furthermore, the in vitro hemolysis of NPs-Cu is less than 1.0% at a high concentration of 8mg/mL, indicating good blood compatibility and the potential for in vivo tumor inhibition application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.