Abstract

Accurate brain tumor segmentation plays a significant role in the area of radiotherapy diagnosis and in the proper treatment for brain tumor detection. Typically, the brain tumor has poor boundary and low contrast between normal and lesion soft tissues that makes segmentation of brain tumor in the CT images a challenging task. This paper presents a novel approach to brain image segmentation using pulse-coupled neural network (PCNN) and zero level set (ZL) with Sobolev gradient (SG) method. In this article, PCNN is designed to use as an edge mapper to provide a regional description for the ZL to segregate the CT images based on contour maps. The PCNN is used to estimate the exact threshold to obtain the prominent edges of the images. Resulting edges are utilized in the ZL to extract image contour from the source image. Due to the over-sensitivity of the ZL method on the initial contour, a level set with the SG has been equipped to overcome the limitation of the ZL method. The experimental results show satisfactory segmentation outcomes with excellent accuracy and acceleration in comparison with the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.