Abstract

We showed previously that chronic exposure to both endothelin-1 (ET-1) and cAMP resulted in a synergistic increase in Glut1 transcription in 3T3-L1 adipocytes via a protein kinase C (PKC)-dependent mechanism. In the present study, we further examined the molecular mechanism involved. Employing transient transfections with Glut1 promoter/enhancer -luciferase reporter and several dominant negative or constitutively active PKC mutants, we identified PKCε as the responsible PKC. Investigation with deletion and mutation mutants of the promoter/enhancer reporter suggested that Sp1, CREB and AP-1 responsive elements on enhancer 2 were involved. Furthermore, chromatin immunoprecipitation and co-immunoprecipitation analysis were applied to characterize the interactions between these transcription factors and their bindings to enhancer 2 in vivo. The results indicate that there are both negative and positive interactions between ET-1 and cAMP signaling pathways. On the one hand, cAMP inhibits ET-1 induced NF-κB activation required for ET-1-stimulated Glut1 transcription; on the other hand, cAMP, via sustained CREB phosphorylation, may activate AP-1 and cooperate with ET-1-activated PKCε to enhance Sp1 expression and consequently to generate a stable enhancer 2-bound Sp1/pCREB/AP-1 complex, which can strongly facilitate Glut1 transcription more than the additive effect of ET-1 and cAMP alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.