Abstract

Hydrogen sulfide (H2S) has a crucial impact on diverse biological processes and has been shown to be related to various diseases. Many probes have been developed to detect intracellular H2S by fluorescent imaging. However, the development of rapid, highly selective and sensitive H2S probes remains a challenge. Herein, two fluorogenic probes, CNS and FCS, are designed and synthesized for the ultrafast detection of H2S with fluorescein and coumarin fluorophores. The results show that both probes can be applied to monitor and image endogenous H2S in cervical cancer HeLa cells and live zebrafish, and FCS shows a higher sensitivity, selectivity and fluorescence intensity. We then further applied FCS in a Parkinson's disease Drosophila model, and the results show that FCS can precisely indicate the level of H2S in the Parkinson's disease model. Thus, FCS will likely to be applied for the early diagnosis of Parkinson’s disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call