Abstract

BackgroundSweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution.ResultsAn integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk.ConclusionsA low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.

Highlights

  • Sweet sorghum is regarded as a very promising energy crop for ethanol production because it supplies grain and sugar, and offers lignocellulosic resource

  • Novel process flow of ethanol production from sweet sorghum stalks Sweet sorghum shows a potential for ethanol production because its stalk is rich in both non-structural carbohydrates and structural carbohydrates [20]

  • Costcompetitive ethanol production from sweet sorghum is challenged by the bioconversion of all carbohydrates from sugar and lignocellulose fractions into ethanol

Read more

Summary

Introduction

Sweet sorghum is regarded as a very promising energy crop for ethanol production because it supplies grain and sugar, and offers lignocellulosic resource. Sweet sorghum has several primary advantages, such as (1) its adaptability to diverse climate zones and soil conditions (salinity, alkalinity and drought); (2) low requirement of fertilizers; (3) high water-usage efficiency compared with more conventional crops (1/3 of sugarcane and 1/2 of corn), and (4) short growth period (3 to 5 months) [3]. Based on these advantages, sweet sorghum can be planted on marginal lands. Cost-competitive ethanol production from sweet sorghum requires the bioconversion of all carbohydrates, including that of the sugar and lignocellulosic fraction, into ethanol

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call