Abstract
In this paper, a new robust sparsity (or sparseness)-aware adaptive filtering algorithm is proposed for the purpose of system identification and acoustic echo cancelation. It is named the improved proportionate fast normalized least mean square (IPFNLMS) algorithm. This latter has been derived by an effective integration of the update control matrix of the improved proportionate NLMS (IPNLMS) algorithm to the Kalman-based adaptation gain of the fast-NLMS (FNLMS) algorithm. Simulations were carried out both in synthetic and real long acoustic impulse responses at different sparseness levels with stationary and non-stationary inputs, followed by a verification with real experiment data. Results have shown interesting improvements for the proposed algorithm with respect to its ancestors in terms of convergence speed, steady-state performance, tracking capability and robustness against system sparsity variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.