Abstract
In this study, a novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride (PMIA@PVDF) nanofiber separator was successfully synthesized via facile coaxial electrospinning. The thermal resistance, electrolyte uptake, ion conductivity as well as anodic stability window of the nanofiber separator were synchronously improved to above 260 °C, 753%, 1.7 mS cm−1 and 5.0 V, which resulted in an appealing safety and electrochemical performance. The markedly enhanced performance could be ascribed to the synergistic advantages of the PMIA core and PVDF shell in the homogeneous PMIA@PVDF nanofiber separator. The PMIA core in PMIA@PVDF nanofiber with high melting point and rigidity character acting as stable skeleton strengthened the thermal stability and integrity of the whole separator. Meanwhile, the lyophilic PVDF shell along with the interconnected open pore structure of electrospinning membrane guaranteed the membrane wettability to electrolyte so as to the ion conduction. Most impressively, under high temperature treatments above 180 °C, the PVDF shell could melt and completely occlude the macropores in PMIA@PVDF nanofiber separator to shut down the battery operation without obvious dimensional shrinkage. Thus, the superiorities in electrochemical performance and safety made PMIA@PVDF nanofiber separator a highly qualified separator for high performance lithium ion battery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.