Abstract

A novel Co(ii) coordination polymer, [Co(H2O)6][Co6(bpybdc)2(N3)10(H2O)4]·8H2O (bpybdc2- = 1,1'-bis(3,5-dicarboxylatophenyl)-4,4'-bipyridinium), has been synthesized from a rigid zwitterionic tetracarboxylate ligand and azide. In this compound, hexacobalt clusters with mixed μ-1,1-azide, μ3-1,1,1-azide and μ-1,3-carboxylate bridges are linked into chains by μ-1,3-azide bridges, and the chains are interlinked into 2-fold interpenetrated three-dimensional frameworks through the organic ligand and hydrogen bonds mediated by hexaaquacobalt(ii) complex ions. Magnetic analysis suggested that intracluster ferromagnetic and intercluster antiferromagnetic interactions work together to give overall antiferromagnetic ground states for the azide and carboxylate bridged chain. When applied as an anode for lithium-ion batteries, the coordination polymer changes into an amorphous phase and exhibits a relatively high reversible capacity of 510 mA h g-1 with stable cycling behavior and rate performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.