Abstract

A combined experimental and numerical study of interaction between cooling flow and mainstream gas flow in a turbine rotor-stator rim cavity is reported. Particular emphasis is put on the flow phenomena in a rim cavity downstream of rotor blades. The experiments are conducted on a rig simulating an engine HP-turbine in which cooling effectiveness distributions as well as velocities, turbulence quantities, pressure, and temperature profiles are measured. Numerical calculation, especially at a full 3D, unsteady solution level, can lead to satisfactory predictions in fluid and mass transfer inside the cavity. Both experimental and numerical results indicate that large turbulence stresses near the rotor disk intensify turbulent diffusion across the cavity and consequently axial distribution of the cooling effectiveness inside the cavity becomes uniform. In order to obtain an adequate distribution of cooling effectiveness across the rim cavity and to suppress the turbulence level near the rotor surface for more efficient cooling, a novel cooling method is developed using numerical simulation. The disk-front and -rear cavities are then redesigned according to the new cooling strategy and integrated in the test rig. Experimental results verify a significant advance in cooling performance with the new method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.