Abstract

Deep learning based image steganalysis has attracted increasing attentions in recent years. Several Convolutional Neural Network (CNN) models have been proposed and achieved state-of-the-art performances on detecting steganography. In this paper, we explore an important technique in deep learning, the batch normalization, for the task of image steganalysis. Different from natural image classification, steganalysis is to discriminate cover images and stego images which are the result of adding weak stego signals into covers. This characteristic makes a cover image is more statistically similar to its stego than other cover images, requiring steganalytic methods to use paired learning to extract effective features for image steganalysis. Our theoretical analysis shows that a CNN model with multiple normalization layers is hard to be generalized to new data in the test set when it is well trained with paired learning. To hand this difficulty, we propose a novel normalization technique called Shared Normalization (SN) in this paper. Unlike the batch normalization layer utilizing the mini-batch mean and standard deviation to normalize each input batch, SN shares same statistics for all training and test batches. Based on the proposed SN layer, we further propose a novel neural network model for image steganalysis. Extensive experiments demonstrate that the proposed network with SN layers is stable and can detect the state of the art steganography with better performances than previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.