Abstract

A locally installed photovoltaic (PV)-powered motor pump is a viable solution for a water pumping system (WPS) in rural locations. In this study, a single-stage, PV-fed, SRM-powered WPS was investigated and realized using a speed sensorless sliding mode controller (SMC)-based direct torque control (DTC). As a result, no additional DC-DC converter was required for maximum power absorption from the PV source. By utilizing a novel high-side switch asymmetric converter with a hybrid Perturb and Observe–Grey Wolf optimization (POGWO) method integrated with a DC-link voltage controller, an efficient single-stage conversion was achieved. The robustness of the proposed integrated control is presented by comparing it with a Genetic Algorithm and Particle Swarm Optimization (PSO). Extensive results using MATLAB SIMULINK are shown to validate the proposed system in both steady-state and transient conditions for various partial shading conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.