Abstract

In order to reduce the dc-link voltage ripple and the dc component of the reactive power under unbalanced input conditions, a novel natural-frame-based control scheme for a Vienna rectifier is proposed in this paper. First, by applying an early-developed direct decoupled synchronization method, the fundamental positive/negative-sequence voltage components are derived. Then, a natural-frame-based current control loop is designed based on the mathematical modeling of the Vienna rectifier under unbalanced input conditions. Based on the natural abc frame, the proposed control scheme considerably reduces total algorithm complexity and helps reduce the dc reactive components and total loss in comparison to the traditional dual-hybrid current control schemes. In addition, the stationary operation region of the Vienna-type rectifiers is analyzed, and the scheme is claimed to work out of the stationary operation region with severe voltage unbalance. The dynamic response of unbalanced input is presented. The experimental results are given to demonstrate the effectiveness of the proposed control scheme. In addition, the performance comparison between the traditional controller and the proposed controller is given by experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.