Abstract

To provide the desired thrust and prevent the engine from exceeding any safety or operational limits, a min–max selector with linear limiters is widely employed in current aircraft engine control logic. However, with the further requirements of engine performance, the traditional linear limiters should be improved. Though there are many researchers working on the development of improvement methods, none of those methods consider the limitation of core shaft acceleration. In this paper, a novel control scheme for aircraft engine based on sliding mode control with acceleration/deceleration limiter is proposed. Above all, the controller construction process is introduced, and the asymptotic stability of the whole controller is given. Then, with linearized model of JT9D turbofan engine, the control performance of the new approach is presented, which is also compared with the traditional methods. The simulation results show that the proposed method is efficient, and it can ensure all outputs of the controller, including the core shaft acceleration $\dot {N}_{c}$ , high-pressure turbine outlet temperature increment $\Delta T_{48}$ , high-pressure compressor stall margin increment $\Delta SmHPC$ , and so on, are well controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.