Abstract

With an increase in online longitudinal users’ interactions, capturing users’ precise preferences and giving accurate recommendations have become an urgent need for all businesses. Existing sequence-aware methods generally exploit a static low-rank vector for acquiring the overall sequential features, and incorporate context information as auxiliary input. As a result, they have a restricted modeling ability for extracting multi-grained sequential behaviors over contextual information. In other words, they poorly capture the hierarchical relationship between context relations and item relations that currently influence users’ preferences in a unified framework. Besides, they usually utilize users’ short-term preferences with either static or irrelevant long-term representation for the prediction. To tackle the above issues, in this paper, we propose a novel Context-aware Recommender System Based on a Deep Sequential Learning Approach (CReS) to capture users’ dynamic preferences by modeling the hierarchical relationships between contexts and items in a particular session, and for combining users’ short-term sessions with the relevant long-term representations. Specifically, within a certain session, we design a hierarchical attention network between the identified context relations and items relations, namely CReSession. Therefore, with CReSession, we could provide a suitable session representation that mimics the hierarchical user interests on multiple granularities of contextual types and its corresponding items. We then introduce a neural attentive bi-directional GRU network to distill only those highly related to the recent short-term session. Finally, the relevant long-term representations and the short-term session are combined with the sequential residual connection to form the final user representation in a unified manner. With extensive experiments on two real-world datasets, CReS not only achieves significant improvement over the state-of-the-art methods in terms of pre-defined metrics, but also provides an interpretable result regarding why we recommend these items to users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.