Abstract

In this paper, we present a novel contention-based medium access control (MAC) protocol, namely, the Channel Reservation MAC (CR-MAC) protocol. The CR-MAC protocol takes advantage of the overhearing feature of the shared wireless channel to exchange channel reservation information with little extra overhead. Each node can reserve the channel for the next packet waiting in the transmission queue during the current transmission. We theoretically prove that the CR-MAC protocol achieves much higher throughput than the IEEE 802.11 RTS/CTS mode under saturated traffic. The protocol also reduces packet collision, thereby saving the energy for retransmission. We evaluate the protocol by simulations under both saturated traffic and unsaturated traffic. Our simulation results not only validate the theoretical analysis on saturated throughput, but also reveal other good features of the protocol. For example, under saturated traffic, both the saturated throughput and fairness measures of the CR-MAC are very close to the theoretical upper bounds. Moreover, under unsaturated traffic, the protocol also achieves higher throughput and better fairness than IEEE 802.11 RTS/CTS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.