Abstract
Web caches are useful in reducing the user perceived latencies and web traffic congestion. Multi-level classification of web objects in caching is relatively an unexplored area. This paper proposes a novel classification scheme for web cache objects which utilizes a multinomial logistic regression (MLR) technique. The MLR model is trained to classify web objects using the information extracted from web logs. We introduce a novel grading parameter worthiness as a key for the object classification. Simulations are carried out with the datasets generated from real world trace files using the classifier in Least Recently Used-Class Based (LRU-C) and Least Recently Used-Multilevel Classes (LRU-M) cache models. Test results confirm that the proposed model has good online learning and prediction capability and suggest that the proposed approach is applicable to adaptive caching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.