Abstract

Complex Orthogonal Design (COD) codes are known to have the lowest detection complexity among Space-Time Block Codes (STBCs). However, the rate of square COD codes decreases exponentially with the number of transmit antennas. The Quasi-Orthogonal Design (QOD) codes emerged to provide a compromise between rate and complexity as they offer higher rates compared to COD codes at the expense of an increase of decoding complexity through partially relaxing the orthogonality conditions. The QOD codes were then generalized with the so called g-symbol and g-group decodable STBCs where the number of orthogonal groups of symbols is no longer restricted to two as in the QOD case. However, the adopted approach for the construction of such codes is based on sufficient but not necessary conditions which may limit the achievable rates for any number of orthogonal groups. In this paper, we limit ourselves to the case of Unitary Weight (UW)-g-group decodable STBCs for 2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a</sup> transmit antennas where the weight matrices are required to be single thread matrices with non-zero entries ∈{± 1,± j} and address the problem of finding the highest achievable rate for any number of orthogonal groups. This special type of weight matrices guarantees full symbol-wise diversity and subsumes a wide range of existing codes in the literature. We show that in this case an exhaustive search can be applied to find the maximum achievable rates for UW-g-group decodable STBCs with g>;1. For this purpose, we extend our previously proposed approach for constructing UW-2-group decodable STBCs based on necessary and sufficient conditions to the case of UW-g-group decodable STBCs in a recursive manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.