Abstract

A novel methodology is proposed in this study to evaluate biofilm adhesion strength in two different ways: by measuring detached biomass caused by tensile force and by shear force. Tensile force was provided by centrifuging biofilm-attached plates installed on rotary tables. Shear force was provided by colliding biofilm-attached plates by gravity. Test biofilms consisting of denitrifiers were formed on the flat surfaces of square (25 cm2) plates that had been submerged in a rectangular open-channel reactor. The detachment teste revealed that, although biofilm adhesion strength was relatively high at the earlier growth stage, it drastically decreased at the later stage. The most weakened location toward biofilm depth was observed at the substratum surface, at which the adhesion strength by tensile force dropped from a several Pa to below 1 Pa as biofilms became aged. The adhesion strength by shear force was all the time more than 100 times as large as that by tensile force, even though having a similar behavior. The proportion of cavity, i.e., biofilm-absent area at the biofilm/substratum interface, increased as biofilms became mature. Cavity formation was strongly responsible for lessening the adhesion strength. It is suggested that biofilm slough-off is caused by the decline of adhesion strength by tensile force rather than by shear force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.