Abstract
Concentrated photovoltaic-thermoelectric generator (CPV-TEG) hybrid system can harvest the low-grade waste heat derived from photovoltaic cells to generate more electric energy. However, it is economically unfeasible due to the expensive cost of thermoelectric generators and higher photovoltaics temperature. Ionic thermocell based on thermogalvanic effect has a more inexpensive cost and ionic Seebeck coefficient of 1– 2 orders of magnitude higher than thermoelectric generators, which is promising for full-spectrum solar cascade utilization. In present work, a novel concentrated photovoltaic and ionic thermocells hybrid system (CPV-iTEC) is reported, aiming to comprehensively evaluate its feasibility. The ionic thermocell adhered directly to the photovoltaic panel consists the π-type multi-channels, electrodes and p/n-type redox electrolytes flowing in multi-channels, which can simultaneously cool photovoltaic panel and output electric energy for waste heat harvesting. A three-dimensional numerical model is proposed and validated by preliminary experiment to investigate the effects of structural and operating parameters on the performance of CPV-iTEC during energy, exergy and economic analyses. Results show that the optimal structural parameters of ionic thermocell are the 2 mm channel height and 1 mm width, showing a 7.18% higher energy efficiency than that of CPV-TEG at 10 concentration ratios. The presence of ionic thermocell can significantly decrease the photovoltaic panel temperature from 351.30 K to 325.14 K, and thus broaden the available concentration ratio from 1– 21 to 1– 39 compared with CPV-TEG, reaching a higher output power of 16.61 W. During the optimization of advanced redox electrolytes/electrodes, the energy efficiency can reach 49.63% at 21 concentration ratios, which is 5.06% higher than that of CPV-TEG, and show a 22.65% lower overall cost. The application of ionic thermocell in the full-spectrum solar cascade utilization of concentrated photovoltaic system is proved to be feasible with significant advantages of low cost, high performance, and flexible operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.