Abstract

In this paper, we discuss the waiting-time distribution for a finite-space, single-server queueing system, in which customers arrive singly following a Poisson process and the server operates under (a,b)-bulk service rule. The queueing system has a finite-buffer capacity ‘N’ excluding the batch in service. The service-time distribution of batches follows a general distribution, which is independent of the arrival process. We first develop an alternative approach of obtaining the probability distribution for the queue length at a post-departure epoch of a batch and, subsequently, the probability distribution for the queue length at a random epoch using an embedded Markov chain, Markov renewal theory and the semi-Markov process. The waiting-time distribution (in the queue) of a random customer is derived using the functional relation between the probability generating function (pgf) for the queue-length distribution and the Laplace–Stieltjes transform (LST) of the queueing-time distribution for a random customer. Using LSTs, we discuss the derivation of the probability density function of a random customer’s waiting time and its numerical implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.