Abstract
All living cells respond to temperature stress through coordinated cellular, biochemical and molecular events known as “heat shock response” and its genetic basis has been found to be evolutionarily conserved. Despite marked advances in stress research, this ubiquitous heat shock response has never been analysed quantitatively at the whole organismal level using behavioural correlates. We have investigated behavioural response to heat shock in a tropical midge Chironomus ramosus Chaudhuri, Das and Sublette. The filter-feeding aquatic Chironomus larvae exhibit characteristic undulatory movement. This innate pattern of movement was taken as a behavioural parameter in the present study. We have developed a novel computer-aided image analysis tool “Chiro” for the quantification of behavioural responses to heat shock. Behavioural responses were quantified by recording the number of undulations performed by each larva per unit time at a given ambient temperature. Quantitative analysis of undulation frequency was carried out and this innate behavioural pattern was found to be modulated as a function of ambient temperature. Midge larvae are known to be bioindicators of aquatic environments. Therefore, the “Chiro” technique can be tested using other potential biomonitoring organisms obtained from natural aquatic habitats using undulatory motion as a behavioural parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.