Abstract

The comprehensive study of compound variations in released smoke during the combustion process is a great challenge in many scientific fields related to analytical chemistry like traditional Chinese medicine, environment analysis, food analysis, etc. In this work, we propose a new comprehensive strategy for efficiently and high-thoroughly characterizing compounds in the online released complex smokes: (i) A smoke capture device was designed for efficiently collecting chemical constituents to perform gas chromatography-mass spectrometry (GC-MS) based untargeted analysis. (ii) An advanced data analysis tool, AntDAS-GCMS, was used for automatically extracting compounds in the original acquired GC-MS data files. Additionally, a GC-MS data analysis guided instrumental parameter optimizing strategy was proposed for the optimization of parameters in the smoke capture device. The developed strategy was demonstrated by the study of compound variations in the smoke of traditional Chinese medicine, Artemisia argyi Levl. et Vant. The results indicated that more than 590 components showed significant differences among released smokes of various moxa velvet ratios. Finally, about 88 compounds were identified, of which phenolic compounds were the most abundant, followed by aromatics, alkenes, alcohols and furans. In conclusion, we may provide a novel approach to the studies of compounds in online released smoke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.