Abstract
Among various differential pressure flow meters, the orifice meter has gained its publicity in applications where cost, space, and ease of maintenance are of high priority. A major problem associated with the use of orifice flow meters at low Reynolds number flows is the significant variation of discharge coefficient (Cd) as a function of orifice geometry and the Reynolds number. In this work, a two-dimensional axisymmetric numerical model was applied to the investigation of viscous, incompressible flow through square-edged concentric orifice plate for the purpose of studying the performance of discharge coefficient consequent to variations of Reynolds number (Re), orifice/pipe diameter ratio (β), and orifice thickness ratio (t*). The analysis of numerical results by means of multiple regression method has yielded a new correlation incorporating the effect of the parameters under study on orifice meter discharge coefficient for orifice bore Reynolds numbers (Reo) < 250. Results of relevant investigations from the literature are used in the present work as references for the validation of the numerical model as well as the proposed correlation for discharge coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.